

MPSlib: A C++ class for MPS simulation

MPSlib provides a C++ class, and a set of algorithms for simulation of
models based on a multiple point statistical (MPS) models inferred from
a training image:

	ENESIM [GUARDIANO].

	Generalized ENESIM [HANSEN2016].

	Direct Sampling [MARIETHOZ2010].

	SNESIM using tree structures [STREBELLE2002].

	SNESIM using list structures [STRAUBHAAR2011].

The above list of algorithms are implemented in two types of algorithms that differ in the way information is inferred from the training image. ENESIM type algorithms samples directly from the training image during simulation, while SNESIM type algorithms scan the training image prior to simulation, and stores the statistics in memory.

	GENESIM:: mps_genesim

mps_genesim is an implementation of the generalized ENESIM algorithm [GUARDIANO]. It can run as a pure ENESIM algorithm, in which the whole training image is scanned at each iteration, or it can run as a Direct Sampling DS algorithm [MARIETHOZ2010], in which the training image is scanned for the first matching event. It can can also run as generalized ENESIM GENESIM algorithm in which the training image is scanned for the first N matching event [HANSEN2016].

	SNESIM:: mps_snesim_tree/mps_snesim_list

Two types of SNESIM type simulation methods are implemented.

mps_snesim_tree stores statistics from the training image in a tree structure, as proposed by [STREBELLE2002]
.
mps_snesim_list stores statistics from the training image in a list structure, as proposed by [STRAUBHAAR2011].

mps_snesim_tree`and `mps_snesim_list differ only in how the information from the training image is store in memory.

Conditional data

All algorithms can handle hard and co-loccated soft data. mps_genesim can also handle non-colocated soft data [HANSEN2018].

Entropy

The entropy of the (unknown) probability distribution related to a specific choice of 1) training image, 2) simulation algorithm, and 3) options for running the simulation algorithm, can optionally be computed as part of simulation. [HANSEN2020].

Estimation

All algorithms can optionally be run in estimation mode in which the 1D marginal conditional distribution is directly computed (similar to Etype statistics from a number of realizations) [JOHANNSSON2021].

PYTHON and MATLAB interface

Interfaces to Python and Matlab/Octave interface are available.

Python notebooks are a good starting point for using MPSlib with Python.

Source Code

The latest stable code can be downloaded from
http://ergosimulation.github.io/mpslib/.

The current development version is available through GitHub at
https://github.com/ergosimulation/mpslib/.

Background

The goal of developing these codes has been to produce a set of
algorithms, based on sequential simulation, for simulation of multiple
point statistical models. The code should be easy to compile and extend,
and should be allowed for both commercial and non-commercial use.

MPSlib (version 1.0) has been developed by
I-GIS [http://www.i-gis.dk/] and Solid Earth Physics, Niels Bohr
Institute [http://imgp.nbi.ku.dk/].

Development was initially funded by the Danish National Hightech Foundation
(now: the Innovation fund) through the ERGO (Effective high-resolution
Geological Modeling) project, a collaboration between
IGIS [http://i-gis.dk/], GEUS [http://geus.dk/], and Niels Bohr
Institute [http://nbi.ku.dk/].

Referencing

Along with the first version of MPSlib a manuscript was published in
SoftwareX. Please use this for referencing MPSlib:

Hansen, T.M., Vu. L.T., and Bach, T. 2016. MPSLIB: A C++ class for sequential simulation of multiple-point statistical models, in SoftwareX, doi:10.1016/j.softx.2016.07.001 [https://doi.org/10.1016/j.softx.2016.07.001]. [pdf [http://www.sciencedirect.com/science/article/pii/S2352711016300164/pdfft?md5=b3663280b22a5d06a2e931ca534ef1b5&pid=1-s2.0-S2352711016300164-main.pdf],www [http://www.sciencedirect.com/science/article/pii/S2352711016300164]].

To cite the use of soft data and the preferential path, please use:

Hansen, T. M., Mosegaard, K., & Cordua, K. S. (2018). Multiple point statistical simulation using uncertain (soft) conditional data. Computers & geosciences, 114, 1-10. doi:10.1016/j.cageo.2018.01.017 [https://doi.org/10.1016/j.cageo.2018.01.017].

To cite the use of MPS based simulation, please use:

Jóhannsson, Óli D., and Thomas Mejer Hansen (2021). Estimation using multiple-point statistics. Computers & Geosciences 156 (2021): 104894. doi:10.1016/j.cageo.2021.104894 <https://doi.org/10.1016/j.cageo.2021.104894>

License (LGPL)

This library is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at
your option) any later version. This program is distributed in the hope
that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU Lesser General Public License for more details. You should
have received a copy of the GNU Lesser General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59
Temple Place - Suite 330, Boston, MA 02111-1307, USA.

The manual

	Installation and compilation
	Download

	Compilation
	LINUX (Ubuntu Linux (>16.04))

	OSX (XCODE+GCC)

	Windows: (mingw-w64)

	Running MPS algorithms
	General options
	Number of realizations

	Random Seed

	Simulation grid size X, Y, Z

	Simulation grid origin X, Y, Z

	Simulation grid grid cell size X

	Training image file

	Output folder (spaces in name not allowed)

	Shuffle Simulation Grid path (2: preferential, 1: random, 0: sequential) # 2

	Entropy factor

	Shuffle Training Image path (1 : random, 0 : sequential)

	HardData filename

	HardData search radius

	Softdata categories

	Soft datafilenames

	Number of threads (minimum 1, maximum 8 - depend on your CPU)

	Debug mode

	MASK file

	Entropy

	Estimation

	GENESIM: Generalized ENESIM
	line 3: Maximum number of counts for conditional pdf, n_max_count_cpdf

	line 4: Max number for conditional points, n_cond

	line 5:Max number of iterations, n_max_ite

	line 6: distance_measure, and, distance_measure, maximum distance, distance_max, and distance_pow

	line 6: ‘max_search_radius’

	line 7:’colocate_dimension’

	debug mode

	SNESIM: Single normal equation simulation
	line 3, n_mul_grids

	line 4, n_min_node

	line 5, n_cond

	lines 6-8, the search template, tem_nx, tem_ny, tem_nz

	Training image format

	Examples
	Ex: Varying template size in SNESIM

	Ex: Soft/uncertain data
	Co-located soft data

	Non Co-located soft data

	Matlab interface
	Getting started in Matlab

	SNESIM type simulation

	GENESIM type simulation
	GENESIM as ENESIM

	GENESIM as DIRECT SAMPLING

	GENESIM, a hybrid between ENESIM and DIRECT SAMPLING

	Plot simulation results

	Parallel simulation

	Sequential Estimation

	Self-information and Entropy

	scikit-mps: a Python interface to MPSlib
	mps.mpslib: The main interface to MPSlib

	mps.eas: reading and writing EAS formatted files
	Read EAS point set

	Write EAS point set

	Read EAS volume set

	Write EAS volume set

	mps.trainingimages: Easy access to training images.

	mps.plot: Plotting utilities
	plot_reals_3d()

	Pyhthon Notebook examples
	MPSlib: Getting started with MPSlib/scikit-mps in Python
	Setup MPSLib

	Choose training image

	Run MPSlib

	Plot some realizations using matplotlib

	MPSlib: hard and soft data in MPSlib
	Define hard data

	Define soft/uncertain data

	Preferential path

	Hard data

	Soft/uncertain data

	MPSlib: Using masks

	MPSlib: Training images in scikit-mps
	List the available training images

	Plot training images

	Coarsen a 2D training to a 3D

	MPSlib: estimation
	Estimation

	Simulation

	MPSlib: computation of entropy and self-information
	Setup MPSLib

	Plot entropy

	Entropy as a function of number of conditional data

	MPSlib: variable template size in mps_snesim_tree and mps_snesim_list

	GENESIM with distance weighing

	Example: Mapping buried valleys in Kasted, Denmark
	Get the training image and conditional data

	Plot the training image and the conditional data

	MPSlib in Kasted
	Setup and run MPSlib

	Conditional simulation - hard data

	Conditional simulation - soft data

	Conditional simulation - Setup MPSlib to use both conditional hard well data, aoft conditional data related to ELEVATION and RESISTIVITY

	Conditional estimation

	Implementation
	EX: The ENESIM Class

	Contributions

	References

Installation and compilation

Download

The latest release, containing statically compiles binaries for Windows and Linux, can be found at
https://github.com/ergosimulation/mpslib/releases/latest.

The source can be downloaded from GitHub at
https://github.com/ergosimulation/mpslib.

Compilation

The MPSlib codes are written in standard
C++11 [https://www.wikiwand.com/en/C%2B%2B11]. MPSlib has been
developed using the GNU C++ compiler (tested on Windows, Linux and OSX),
and Visual Studio C++. Using GNU C++ the code can be compiled using

git clone https://github.com/ergosimulation/mpslib.git MPSlib
cd MPSlib
make

LINUX (Ubuntu Linux (>16.04))

Prerequisites: g++, which can be installed using

sudo apt-get install build-essential

Compiler flags:

CPPFLAGS = -static -O3 -std=c++11 -Wl,--no-as-needed

OSX (XCODE+GCC)

Prerequisites: Xcode, g++

The ‘-static’ option is not available using XCode/OSX, so the following
compiler flags are suggested:

CPPFLAGS = -O3

Windows: (mingw-w64)

MPSlib has been tested using MinGW, specifically mingw-w64
([http://mingw-w64.org/doku.php]), which can be obtained in several
ways. (Note that not all builds of MinGW works!)

One (recommended) approach is to make use of MSYS2. Follow the guide at
[http://msys2.github.io/] to install MSYS2, and then install the
mingw_w64 toolchain using:

pacman -S mingw-w64-x86_64-gcc
pacman -S make

Then run “MSYS2 MinGW 64-bit” and/or “MSYS2 MinGW 64-bit” (should present in the windows start menu), and run the ‘make’ command in the mpslib folder:

cd /mnt/c/Users/john/mpslib
make

Running MPS algorithms

The MPS algorithms are run from the commandline using a parameter
filename as an argument.

If no argument is given, the default parameter file is assumed to the
be name of the simulation

algorithm appended with ‘.txt’.

Therefore

mps_genesim
mps_snesim_tree
mps_snesim_list

will be equivalent to

mps_genesim mps_genesim.txt
mps_snesim_tree mps_snesim_tree.txt
mps_snesim_list mps_snesim_list.txt

	General options

	GENESIM: Generalized ENESIM

	SNESIM: Single normal equation simulation

General options

The following entries appear in all parameter files

Number of realizations

The number of realizations to generate

Random Seed

An integer determines the random seed. A fixed value will return the
same realizations for each run.

	[0] assign a ‘random’ seed at each iteration (new seed every second)

Simulation grid size X, Y, Z

The number of grid cells in the simulation grid

Simulation grid origin X, Y, Z

The value coordinate of the first pixel in the X, Y, and Z direction.

Simulation grid grid cell size X

The size of each pixel in the simulation grid, in the X, Y, and Z
direction.

Training image file

The name of the training image file (no spaces allowed).

it must be in GSLIB/EAS ASCII format, and the first line (the ‘title’)
must contain the

dimension of the training file as ‘NX NY NZ’.

See the TI folder for examples, and Training image
format for more information.

Output folder (spaces in name not allowed)

The path to the folder containing all output. Use forward slash ‘/’ to
separate folders.

Shuffle Simulation Grid path (2: preferential, 1: random, 0: sequential) # 2

	[0] sequential path through simulation grid (possibly a multiple
grid)

	[1] random path through simulation grid

	[2] preferential path (only useful when soft data is considered)

Entropy factor

When a preferential path is selected the ‘EntropyFactor’ can be se as a
second parameter after the choice of path.

Shuffle Training Image path (1 : random, 0 : sequential)

(Does not affect snesim type algorithms)

	[0] sequential path

	[1] random path

HardData filename

EAS filename with 4 columns: X, Y, Z, and D

HardData search radius

(world units)

Softdata categories

(separated by ;)

Soft datafilenames

(separated by ; only need (number_categories - 1) grids)

Number of threads (minimum 1, maximum 8 - depend on your CPU)

Currently not used.

Debug mode

	[-2]: No information is written to screen or files on disk

	[-1]: + Simulation output is written to files on disk

	[0]: + Information about simulation is written to screen

	[1]: + Simulated realization(s) are shown in terminal

	[2]: + Extra information is written to disk (Random path, number of conditional data, …)

	[3]: + Debug information written to screen (results in much slower performance - in general not useful
for an end-user)

MASK file

EAS filename with 4 columns: X, Y, Z, and MASK.
A mask files of tha same size as the simulation grid can be supplied. ‘0’ in a node indicates a node that will not be simulated. ‘1’ in a node indicates a node that will be simulated.

Entropy

	[0]: No computation of entropy

	[1]: Compute entropy/self-information as part of simulation

See [HANSEN2020] for more information.

Estimation

	[0]: Do not perform sequential estimation

	[1]: Perform sequential estimation (rather than sequential simulation)

See [JOHANNSSON2021] for more information.

GENESIM: Generalized ENESIM

GENESIM (mps_genesim) [HANSEN2016] is a generalized version of the ENESIM algorithm [GUARDIANO], in which the conditional distribtion computed from a finite set of conditional events.

In one extreme, the full conditional distribution is obtained by scanning the whole training image at each iteration, in which case GENESIM is identical to the ENESIM algorithm [GUARDIANO].

In another extreme, the conditional distribution is constructed from only one conditional event. In this case GENESIM acts similar to the direct sampling algorithm [MARIETHOZ2010], with the practical difference that the local conditional distribution is in fact computed, and a realization is drawn from. In the direct sampling algorithm the conditional distribution is never realized, instead a new pixel value is chosen from the first matching conditional event.

An example of a parameter file for mps_genesim:

Number of realizations # 1
Random Seed (0 `random` seed) # 0
Maximum number of counts for conditional pdf # 1
Max number of conditional point # 25
Max number of iterations # 10000
Distance Measure (0: discrete, 1: continious), maximum distance, power # 1 0 0
ColocateDimension # 0
Maximum Search Radius # 1000000
Simulation grid size X # 18
Simulation grid size Y # 16
Simulation grid size Z # 1
Simulation grid world/origin X # 0
Simulation grid world/origin Y # 0
Simulation grid world/origin Z # 0
Simulation grid grid cell size X # 1
Simulation grid grid cell size Y # 1
Simulation grid grid cell size Z # 1
Training image file (spaces not allowed) # ti.dat
Output folder (spaces in name not allowed) # .
Shuffle Simulation Grid path (2: preferential, 1: random, 0: sequential) # 2
Shuffle Training Image path (1 : random, 0 : sequential) # 1
HardData filename (same size as the simulation grid)# conditional.dat
HardData seach radius (world units) # 1
Softdata categories (separated by ;) # 0;1
Soft datafilenames (separated by ; only need (number_categories - 1) grids) # soft.dat
Number of threads (minimum 1, maximum 8 - depend on your CPU) # 1
Debug mode(2: write to file, 1: show preview, 0: show counters, -1: no) # -2

A description of the options that apply to all MPS algorithms can be
seen here.

The following lines in the parameter files are specific to the GENESIM
type algorithm:

line 3: Maximum number of counts for conditional pdf, n_max_count_cpdf

n_max_count_cpdf defines the maximum number of counts in the
conditional distribution obtained from the training image. When
´n_max_count_cpdf´ has been reached the scanning of the training
image stops.

When n_max_count_cpdf<0 no limit on the number of counts is set.

line 4: Max number for conditional points, n_cond

A maximum of n_cond conditional data are considered at each
iteration when inferring the

conditional pdf from the training image.

line 5:Max number of iterations, n_max_ite

A maximum of n_max_ite iterations of searching through the training
image are performed.

ifn_max_ite<0 the full training image is scanned.

line 6: distance_measure, and, distance_measure, maximum distance, distance_max, and distance_pow

The distance_measure used:

1: Number of matching pixels (Discrete TI)

2: Euclidean distance (Continuous TI)

The maximum distance what will lead to accepting a conditional template
match is set by distance_max. If not set, is set to distance_max=0,
which means that a perfect match is searched for!

Distance power is used to weight the conditioning data as a function
of distance from the center values. distance_pow=0 indicated no
weighing. A higher will favor the data value of conditional events
closer to the center value.

See Mariethoz et al. (2010) Eqn. 2-3. for details.

line 6: ‘max_search_radius’

Only conditional data within a radius of ‘max_search_radius’ is used
as conditioning data.

line 7:’colocate_dimension’

For a 3D TI make sure the order matters in the last dimensions (allow
performing 2D co-simulation with conditional data in the third dimension)

debug mode

when debug>1, A number of extra grids will be written to disk for
each realization. If the used training image is called ‘ti.dat’, then,
following GSLIB files contains:

ti.dat_tg1_0.gslib: The distance between the conditional event and
the corresponding best ‘match’ in the TI .

ti.dat_tg2_0.gslib: The number of matching counts for the
conditional pdf.

ti.dat_tg3_0.gslib: The index in the TI, of the best matching
conditional event.

ti.dat_path_0.gslib: Index of the path in the simulation grid.

ENESIM

The classical ENESIM algorithm can be run settingn_max_count_cpdf
and n_max_ite to infinity (using -1):

Maximum number of counts for conditional pdf # -1

Max number of iterations # -1

In this case the full training image will be scanned at each iteration
to establish a conditional probability density.

ENESIM leads to a very slow algorithm, but the full/most accurate
conditional distribtuion is computed at each iteration. This can be
usefull when performing simulation conditional to soft data. If not,
then the Direct Sampling algorithm is much more efficient
(n_max_count_cpdf=inf)

GENESIM

In case0<n_max_count_cpdf<infinity, mps_genesim will behave
intermediate between ENESIM and Direct Sampling.

GENESIM is useful in case the local conditional distribution is needed,
as is the case when conditioning to soft data. In this case, the GENESIM
may be much faster than ENESIM.

DIRECT SAMPLING

In case n_max_count_cpdf=1, mps_genesim will behave similar to
the direct sampling algorithm. The computational efficiency can further
be controlled using n_max_ite,to be set a value smaller than the
number of pixels in the training image.

As the full local conditional distribution is not available (it is never
computed/inferred), conditioning to soft data is done using the
rejection sampler (Hansen et al. 20xx, submitted)

Temporary Grids

If the verbose level is higher than one 5 temporary grids are written do
disk. In case the training image has the name ‘ti.dat’ the following
grids are exported as EAS files :

ti.dat_tg1_0.gslib: The distance for the last accepted match, when
scanning the training image.

ti.dat_tg2_0.gslib: The number of counts used to set up the
conditional probability density. When using Direct Sampling,
n_max_count_cpdf=1, this value should never be higher than 1.

ti.dat_tg3_0.gslib: The index of the position in the training image
for last/best match.

ti.dat_tg4_0.gslib: The number of iterations in the training image.

ti.dat_tg5_0.gslib: Used number of conditional points.

SNESIM: Single normal equation simulation

The mps_snesim_tree and mps_snesim_list differ only in the way conditional data are stored in memory (using either a tree like [STREBELLE2002] or a list structure as [STRAUBHAAR2011]).

Both algorithms share the same format for the required parameter file:

Number of realizations # 1
Random Seed (0 for not random seed) # 0
Number of mulitple grids # 2
Min Node count (0 if not set any limit) # 0
Max Conditional count (-1 if not using any limit) # -1
Search template size X # 5
Search template size Y # 5
Search template size Z # 1
Simulation grid size X # 100
Simulation grid size Y # 100
Simulation grid size Z # 1
Simulation grid world/origin X # 0
Simulation grid world/origin Y # 0
Simulation grid world/origin Z # 0
Simulation grid grid cell size X # 1
Simulation grid grid cell size Y # 1
Simulation grid grid cell size Z # 1
Training image file (spaces not allowed) # TI/mps_ti.dat
Output folder (spaces in name not allowed) # output/.
Shuffle Simulation Grid path (2: Preferential, 1: random, 0: sequential) # 1
Maximum number of counts for condtitional pdf # 10000
Shuffle Training Image path (1 : random, 0 : sequential) # 1
HardData filaneme (same size as the simulation grid)# harddata/mps_hard_grid.dat
HardData seach radius (world units) # 15
Softdata categories (separated by ;) # 1;0
Soft datafilenames (separated by ; only need (number_categories - 1) grids) # softdata/mps_soft_xyzd_grid.dat
Number of threads (minimum 1, maximum 8 - depend on your CPU) # 1
Debug mode(2: write to file, 1: show preview, 0: show counters, -1: no) # 1

A few lines in the parameter files are specific to the SNESIM type
algorithms, and will be discussed below:

line 3, n_mul_grids

n_mul_grids defines the number of multiple grids used.
n_mul_grids=0, means that no multiple grid will be used.

line 4, n_min_node

The search tree will only be searched to a level where the number of
counts in the conditional distribution is above n_min_node.

line 5, n_cond

n_cond is the maximum number of conditional point used, within the
search template

lines 6-8, the search template, tem_nx, tem_ny, tem_nz

The search template defines the size of the template that is used to
prescan the training image

and store (using a tree or list) the conditional distribution for all
configurations of the data template.

Varying template size [only valid for mps_snesim_tree]

Optionally a the template size can vary for different multiple grid
sizes. The first number refer to the template size at the coarsest
multiple grid. The last number refer to the template size at the finest
grid (simulated last). The template size for intermediate grid sizes is
found by linear interpolation, and output to the screen if the debug
mode is above 0. The use of varying template sizes can reduce
computation time considerable, with only little effect on the pattern
reproduction.

For example the following defines a 9x9x1 template at the coarsest grid,
and a 3x3x1 grid at the finest grid

Search template size X # 9 3
Search template size Y # 9 3
Search template size Z # 1 1

Also,

Search template size X # 5 5
Search template size Y # 5 5
Search template size Z # 5 5

is equivalent to

Search template size X # 5
Search template size Y # 5
Search template size Z # 5

Training image format

Training images must be formatted as
EAS/GSLIB [http://www.gslib.com/gslib_help/format.html] ascii file,
with the special requirement that that the first line must describe the
dimensions of the training image

2 3 1
1
Channel
 1
 1
 0
 0
 1
 1

Line 1: Contains the dimension of training image, specified as 3
integeres seprated by a space nx ny nz

Line 2: The number columns of data (typically one for a training image)

Line 3: The name of column 1, [There should be one line, with the name
of each column, for each number of columns]

Line4 -> : The training image data. One data value on each of the
following nx*ny*nz lines.

Examples

The section contains different example of the use of MPSlib.

	Ex: Varying template size in SNESIM

	Ex: Soft/uncertain data

Ex: Varying template size in SNESIM

mps_snesim_tree and mps_snesim_list allowing using a template size that changes for each multiple grid.
The template size is given as a value for the coarsest multiple grid, and a value for the final dense simulation grid. Linear interpolation is used to compute the template size at each multiple grid

For example using a template size of 8x7x4 oon the coarsest grid and a template size of 4x3x3 on the finest grid can be given in the mps_snesim parameter file as

6Search template size X # 8 4
7Search template size Y # 7 3
8Search template size Z # 4 3
9...

The main reason for using variable template size is that, typically, a considerable amount of CPU is used in the finer simulation grids to prune (remove) conditional data.

The computational speed and effect on simulation results can be investigated by simulating with a fixed random seed for a number of different choices of template (from mpslib_snesim_varying_template.py [https://github.com/ergosimulation/mpslib/blob/master/scikit-mps/examples/mpslib_snesim_varying_template.py]).
Figure Fig. 1 shows one realization obtained using a fixed template size of 11x11x1 (upper left) compared to using varyaing templates. The startingf template (used at the coarse multiple grid) is set to 11x11x1 in all cases. The template at the finest grid is tested for 10x10x1, 9x9x1, …., 1x1x1.
The lower left figure shows the simulation time for each realization. Figure Fig. 2 show the computational speedup relative to using a fixed full size template.

The computational speedup is more significant doing 3D simulation.

[image: ../_images/varying_template.png]

Fig. 1 E-type mean using a sequential, random and preferential simulation path, conditioning to 3 non-co-located soft data.

[image: ../_images/varying_template_speedup.png]

Fig. 2 CPU speedup compared to using a fixed template of size 11x11x1.

Ex: Soft/uncertain data

MPSlib can take ‘soft’ data into account. ‘soft’ data is defined as uncertain and spatially independent information about one ore more model parameters. Formally the soft information is quantified by \(f_{soft}(\mathbf{m})\) as

(1)\[\begin{split}f_{soft}(\mathbf{m}) & \sim f_{soft}(m_1, m_2, m_3, ..., m_M)\\
& = f_{soft}(m_1) \ f_{soft}(m_2) \ ... \ f_{soft}(m_M)\\
& = \prod_i^{M} f_{soft}(m_i)\end{split}\]

The assumption of spatial independence is critical. If the uncertain information is in fact spatially dependent (as is typically the case using soft data derived from inversion of geophysical data), the variability in the generated realizations will be too small, such the apparent information content is too high.

MPSlib allow conditioning to both co-located soft data (mps_snesim_tree and mps_genesim) and non-co-located soft data (mps_genesim). The implementation of soft in MPSlib is described in detail in in [HANSEN2018].

Soft data must be provided as an EAS file. If a training image with Ncat categories is used
then the EAS file must contain N=3+`Ncat` columns. The first three must be ´X´, Y, and Z.
The the following columns provide the probability of each category.
Column 4 (the first column with soft data) refer to the probability of the category with the lowest number in the training image.

An example of defining 3 soft data, for a case with Ncat=2,
and with soft information close to hard information (almost no uncertainty) is

 1 SOFT data mimicking hard data
 2 5
 3 X
 4 Y
 5 Z
 6 P(cat=0)
 7 P(cat=1)
 8 6 14 0 0.001 0.999
 9 13 16 0 0.001 0.999
10 3 14 0 0.999 0.001

Co-located soft data

The usual approach to handling soft data, is to conisder on co-located soft data during sequential simulation. This means that at each iteration of sequential simulation one sample from

\[f(m_i | I_{hard}, I_{soft}) = f_{TI}(m_i | \mathbf{m}_c) * f_{soft}(m_i)\]

As demonstrated in [HANSEN2018] the use of a unilateral or random path using co-located soft data leads to ignoring most of the soft information. The problem is most severe when using scattered soft data.
If in stead a simulation path is chosen where more informed nodes (where the entropy of the soft data i high) are visited preferentially to less informed nodes, then much more of the soft data is being taken into account.

The default path in MPSlib is therefore the preferential path, that can selected as the path type 2 in the parameter file. The second parameter controls the randomness of the preferential path.

17...
18Training image file (spaces not allowed) # ti.dat
19Output folder (spaces in name not allowed) # .
20Shuffle Simulation Grid path (2: preferential, 1: random, 0: sequential, 2: preferential) # 2 4
21Shuffle Training Image path (1 : random, 0 : sequential) # 1
22...

The behavior of mps_genesim with soft data is controlled by the number of soft conditional data, and the max search radius of conditional soft data. To use co-located soft data, the number of soft data is set to 1, and the search radius is set to 0 as :

17...
18Max number of conditional point: Nhard, Nsoft# 16 1
19...
20Max Search Radius for conditional data [hard,soft] # 10000000 0
21...

Figure Fig. 3 shows the point wise mean of 100 realizations using the soft data described above, in case using a sequential, random and preferential simulation path (from mpslib_hard_as_soft_data.py [https://github.com/ergosimulation/mpslib/blob/master/scikit-mps/examples/mpslib_hard_as_soft_data.py]):
.

[image: Realizations]

Fig. 3 E-type mean using a sequential, random and preferential simulation path, conditioning co-located soft data.

and

Non Co-located soft data

If soft information is scattered, and located relatively far away from each other, then using only co-located soft data my work well. But, when soft information is more densely available, using only co-located soft data results in disregarding available information.

mps_genesim can handle non-colocated soft information running both in ENESIM mode and Direct Sampling mode (using only 1 match in the training image). In both cases one samples from the following conditional distribution during sequential simulation:

\[f(m_i | I_{hard}, I_{soft}) = f_{TI}(m_i | \mathbf{m}_c) * \prod_{j=1}^{Nc_{soft}} f_{soft}(m_j)\]

where \(Nc_{soft}\) refer to the number of (the closest) soft conditional points to use. This number of defined right next to the maximum number of hard data used for condisioning.
In order to use non-co-located soft data, the search radius for soft data must be set to a value larger than 0. In the example below, the closest 25 hard and 3 soft data is used:

:linenos:
:lineno-start: 1
:emphasize-lines: 4

Number of realizations # 1
Random Seed (0 `random` seed) # 1
Maximum number of counts for conditional pdf # 1
Max number of conditional point: Nhard, Nsoft# 25 3
Max number of iterations # 1000000
...
Max Search Radius for conditional data [hard,soft] # 10000000 10000000
...

Figure Fig. 4 shows the point wise mean of 100 realizations using a sequential, random and preferential simulation path (from mpslib_hard_as_soft_data.py [https://github.com/ergosimulation/mpslib/blob/master/scikit-mps/examples/mpslib_hard_as_soft_data.py]) using two non-colocated soft data.

Note how the sequential and random path can in principle be used, as part of the soft data is used at each iteration, but that the simulation time is dramatically higher than using the preferential path (10 to 20 times faster). The speed is us due to the simulation of the nodes of the soft data the start of the simulation. When the soft data has been simulated, the will in effect be treated as previously simulated hard data, and hence the simulation will perform as normal conditional sequential simulation.

[image: ../_images/hard_as_soft_data_nonco_mps_genesim_2.png]

Fig. 4 E-type mean using a sequential, random and preferential simulation path, conditioning to 3 non-co-located soft data.

Matlab interface

A simple Matlab interface to the algorithms on MPSlib has been
developed. It consists of the following m-files:

Running MPSlib algorithms:

	mps_cpp.m [https://github.com/ergosimulation/mpslib/blob/master/matlab/mps_cpp.m]: Run MPSlib algorithms

	mps_cpp_thread.m [https://github.com/ergosimulation/mpslib/blob/master/matlab/mps_cpp_thread.m]: Split MPSlib simulation on multiple
threads

	mps_cpp_clean.m [https://github.com/ergosimulation/mpslib/blob/master/matlab/mps_cpp_clean.m]: Clean up files after running MPSlib.

Reading and writing parameter files:

	mps_snesim_read_par.m

	mps_snesim_write_par.m

	mps_enesim_read_par.m

	mps_enesim_write_par.m

Examples:

	mps_cpp_example.m

	mps_cpp_example_softwarex.m

	mps_cpp_example_estimation.m

	mps_cpp_example_entropy.m

These m-files requires no special toolboxes, and are compatible with GNU
Octave.

mps_cpp takes to three inputs, of which the first two are mandatory:

TI : [1D/2D/3D] matrix with a training image
SIM : [1D/2D/3D] simulation grid of NaN values
O : Object controlling the simulation. (optional)

mps_cpp.m can be used to perform MPS simulation using both
mps_genesim, mps_snesim_tree, and mps_snesim_list. By
default mps_snesim_tree is used unless the choice of simulation
algorithm is set in the O.method field:

O.method='mps_snesim_tree';
O.method='mps_snesim_list';
O.method='mps_genesim';

Getting started in Matlab

The simplest approach to using mps_cpp is to use for example

TI=mps_ti; % training image
SIM=zeros(80,60).*NaN; % simulation grid
[reals,O]=mps_cpp(TI,SIM);

This will use the classical channel based training image (from Strebelle
(2000)), and perform unconditinoal simulation (using mps_snesim_tree) in 2D grid of size 80x60 pixels. reals will contain one single generated realization, and the O structure will be populated with all the parameters used for mps_snesim_tree:

O =

struct with fields:

 null: ''
 debug: -1
 rseed: 0
 output_folder: '.'
 WriteTI: 1
 ti_filename: 'ti.dat'
 simulation_grid_size: [60 80 1]
 origin: [0 0 0]
 grid_cell_size: [1 1 1]
 mask_filename: 'mask.dat'
 hard_data_filename: 'd_hard.dat'
 method: 'mps_snesim_tree'
 parameter_filename: 'mps_snesim.txt'
 n_real: 1
 n_multiple_grids: 3
 n_min_node_count: 0
 n_cond: 39
 template_size: [5 5 1]
 shuffle_simulation_grid: 2
 entropyfactor_simulation_grid: 4
 shuffle_ti_grid: 1
 hard_data_search_radius: 1
 soft_data_categories: '0;1'
 soft_data_filename: 'soft.dat'
 n_threads: 1
 doEstimation: 0
 doEntropy: 0
 exe_filename: 'F:\PROGRAMMING\mpslib\matlab\..\mps_snesim_tree.exe'
 time: 0.2945
 x: [1×60 double]
 y: [1×80 double]
 z: 0
 clean: 1

SNESIM type simulation

SNESIM, using both search trees and list for lookup, is available using both mps_snesim_tree``and ``mps_snesim_list. Both algorithms make use of the same parameters (and parameter file)’. The choice of simulation algortihm is done using:

O.method='mps_snesim_list';
O.method='mps_snesim_tree';

The main parameters specific for mps_snesim_tree and mps_snesim_list are

n_multiple_grids: 3 # Number of multiple grids
n_min_node_count: 0 # min number of counts in conditional pdf
 n_cond: 39 # number of conditional data
 template_size: [5 5 1] # the templated size

A dynamic template size canbe set using

O.template_size = [15 15 1; 5 5 1]';

that suggests a template size of [15 15 1] is used at the coarse grid, and [5 5 1] at the finest grid.

GENESIM type simulation

A simple GENESIM type simulation can be obtained using

TI=mps_ti; % training image
SIM=zeros(80,60).*NaN; % simulationgrid
O.method='mps_genesim';
[reals,O]=mps_cpp(TI,SIM,O);

which return the Odata structure:

O =

struct with fields:

 method: 'mps_genesim'
 debug: -1
 rseed: 0
 output_folder: '.'
 WriteTI: 1
 ti_filename: 'ti.dat'
 simulation_grid_size: [60 80 1]
 origin: [0 0 0]
 grid_cell_size: [1 1 1]
 mask_filename: 'mask.dat'
 hard_data_filename: 'd_hard.dat'
 parameter_filename: 'mps_genesim.txt'
 n_real: 1
 n_cond: [25 1]
 n_max_ite: 1000000
 n_max_cpdf_count: 1
 shuffle_simulation_grid: 2
 entropyfactor_simulation_grid: 4
 shuffle_ti_grid: 1
 hard_data_search_radius: 100000
 soft_data_categories: '0;1'
 soft_data_filename: 'soft.dat'
 n_threads: 1
 distance_measure: 1
 distance_min: 0
 distance_pow: 0
 colocated_dimension: 0
 max_search_radius: [1000000 1000000]
 doEstimation: 0
 doEntropy: 0
 exe_filename: 'F:\PROGRAMMING\mpslib\matlab\..\mps_genesim.exe'
 time: 1.9083
 x: [1×60 double]
 y: [1×80 double]
 z: 0
 clean: 1

The main parameters specific for mps_genesim are

 n_cond: [25 1] % maximum number of conditional data for
 % hard and soft data
 n_max_ite: 1000000 % maximum number of iteration in the ti
n_max_cpdf_count: 10 % maximum counts for the conditional pdf

The distance measure_measure, measure_min, measure_pow controls hwo the distance is computed for discrete and continious parameters:

distance_measure: 1
 distance_min: 0
 distance_pow: 0

GENESIM as ENESIM

mps_genesim can act as a classical ENESIM algorithm by scanning the
whole training image at each iteration:

TI=mps_ti; % training image
SIM=zeros(80,60).*NaN; % simulationgrid
O.method='mps_genesim';
O.n_max_ite=1e+9 ; Iterate 'forever'
O.n_max_cpdf_count=1e+9 % No upper limit on number of counts for conditional pdf
[reals,O]=mps_cpp(TI,SIM,O);

GENESIM as DIRECT SAMPLING

mps_genesim can act as the DIRECT SAMPLING algorithm by scanning
whole training image only until one (the first) matching event is found,
i.e. by at each iteration:

TI=mps_ti; % training image
SIM=zeros(80,60).*NaN; % simulationgrid
O.method='mps_genesim';
O.n_max_ite = 1000
O.n_max_cpdf_count=1 ; % No upper limit on number of counts for conditional pdf
[reals,O]=mps_cpp(TI,SIM,O);

GENESIM, a hybrid between ENESIM and DIRECT SAMPLING

GENESIM can run as a hybrid between DIRETC SAMPLING and ENESIM, by setting n_max_cpdf_count somewhere between 1 (DIRECT SAMPLING) and infinitty (ENESIM). This is especially usefule when conditioning to soft data-

TI=mps_ti; % training image
SIM=zeros(80,60).*NaN; % simulationgrid
O.method='mps_genesim';
O.n_max_ite = 1000
O.n_max_cpdf_count=10 ; %
[reals,O]=mps_cpp(TI,SIM,O);

Plot simulation results

mps_cpp_plot, can be used used to plot simulation results

[reals,O]=mps_cpp(TI,SIM,O);
mps_plot_cpp(reals,O);

If debug level is larger than one, then the number of temporary grids
with different information, is also visualized.

O.debug_level=2;
[reals,O]=mps_cpp(TI,SIM,O);
mps_plot_cpp(reals,O);

Parallel simulation

When simulating more than one realization, mps_cpp_thread can be
used to split the simulation onto several threads, such that simulation
will be performed in parallel. (This requires Matlab with the Matlab
Parallel
toolbox [https://mathworks.com/products/parallel-computing/])

TI=mps_ti; % training image
SIM=zeros(80,60).*NaN; % simulation grid
O.method='mps_snesim_tree';
O.n_real=10;

% simulation on one CPU
t0=now;
[reals]=mps_cpp(TI,SIM,O);
disp(sprintf('Elapsed time (sequential): %g s',(now-t0)*(3600*24)))

% simulation on multiple CPUs (require the Matlab Parallel toolbox)
t0=now;
[reals]=mps_cpp_thread(TI,SIM,O);
disp(sprintf('Elapsed time (parallel): %g s',(now-t0)*(3600*24)))

Provides the following output, running on 4 threads:

Elapsed time (sequential): 21.326 s
mps_cpp_thread: Using 4 threads/workers
mps_cpp_thread: running thread #4 in mps_04
mps_cpp_thread: running thread #3 in mps_03
mps_cpp_thread: running thread #2 in mps_02
mps_cpp_thread: running thread #1 in mps_01
Elapsed time (parallel): 6.835 s

Sequential Estimation

All of mps_genesim, mps_snesim_tree, mps_snesim_list can used to perform conditinoal ‘estimation’, rather the the default sequential simulation, simply by setting O.doEstimation=1.

Details about using sequential estimation with MPS algorithms can be found in [JOHANNSSON2021]

TI=mps_ti; % training image
SIM=zeros(80,60).*NaN; % simulationgrid
SIM(10:12,20)=0; % some conditional data
SIM(40:40:43)=1; % some conditional data
O.method='mps_genesim';
O.doEstimation=1;

[reals,O]=mps_cpp(TI,SIM,O);
est = O.cg; % this of size [80,60,2] as the training image has 2 soft_data_categories

Sequential estimation can be performed in parallel, consideiring each pixel at a time. This is utilised in mps_cpp_estimation that use parallel threads for faster estimation:

O.n_max_cpdf_count=100000;
[est]=mps_cpp_estimation(TI,SIM,O);

Self-information and Entropy

The self-information for realizations can be computed by setting O.doEntropy=1.
Details about computing the self-information is found in [HANSEN2020].

In this case the self-information of each realization is returned in O.SI, and the entropy is the simply the average of O.SI.

clear all;
TI=mps_ti; % training image
SIM=zeros(80,60).*NaN; % simulation grid
O.method='mps_snesim_tree';
O.doEntropy=1;
O.n_real = 10;
[reals,O]=mps_cpp(TI,SIM,O);

% The self-information of each realizations is
O.SI =

 431.6090
 364.8060
 415.4050
 378.6850
 425.6930
 402.5930
 524.6750
 475.0100
 336.9290
 489.7420

% Compute the entropy as the average self-information
H_est = mean(O.SI)

 H_est =

 424.5147

scikit-mps: a Python interface to MPSlib

[image: _images/scikit-mps.svg]
 [https://pypi.org/project/scikit-mps][image: _images/scikit-mps1.svg]
 [https://pypi.org/project/scikit-mps][image: _images/license-MIT-blue.svg]
 [https://en.wikipedia.org/wiki/MIT_License][image: _images/colab-badge.svg]
 [https://colab.research.google.com/github/ergosimulation/mpslib/blob/master/scikit-mps/examples/mpslib_in_google_colab.ipynb]scikit-mps [https://pypi.org/project/scikit-mps/]

scikit-mps [https://pypi.org/project/scikit-mps/] is a Python module that interfaces to MPSlib.

It can be installe using pip by (see details at https://pypi.org/project/scikit-mps/):

pip install scikit-mps

Or from the source code located in the mpslib/scikit-mps folder, using

cd mpslib/scikit-mps
pip install .

To allow editing scikit-mps locally after install use

cd mpslib/scikit-mps
pip install -e .

Several Python notebooks examples are located in mpslib/scikit-mps/examples whic can be browsed here:
Python notebooks.

It includes 4 submodules

mps.mpslib
mps.eas
mps.trainingimages
mps.plot

and

mps.mpslib contains the core function for setting up and running the algorithms in MPSlib.
mps.eas contains function to read and write EAS formatted ASCII files.
mps.trainingimages provides easy access to 2D and 3D training images.
mps.plot provides 2D/3D plotting utilities.

It makes use of matplotlib (for 2D graphics) and pyvista [http://docs.pyvista.org/] (for 3D graphics).

A simple example of using scikit-mps to generate 4 realizations using mps_snesim_tree is
(from mpslib_simple.py [https://github.com/ergosimulation/mpslib/blob/master/scikit-mps/examples/mpslib_simple.py]):

import mpslib as mps

Initialize the MPS object, using a specific algorithm (def='mps_snesim_tree')
O=mps.mpslib(method='mps_snesim_tree')

Select number of realiization [def=1]
O.par['n_real']=4

Set training image
O.ti = mps.trainingimages.strebelle()[0]
O.plot_ti()

Run MPSlib
O.run()

Plot the results
O.plot_reals()

O.plot_etype()

that provides Figures Fig. 5 and Fig. 6.

[image: Realizations]

Fig. 5 Realizations from simulation

and

[image: E-type]

Fig. 6 Etype mean and variance from the simulation.

mps.mpslib: The main interface to MPSlib

mps.mpslib provide a class to allow running MPSlib algorithms.
An instance O of the class is class can be created using:

O=mps.mpslib()

This will use a default choice of simulation method, as defined in O.method

In [1]: O.method
Out[1]: 'mps_genesim'

and a default parameter file name, as defined in O.parameter_filename

In [2]: O.parameter_filename
Out[2]: 'mps.txt'

and default parameters for the parameter file, as defined in O.par

In [3]: O.par
Out[3]:
{'n_real': 1,
'rseed': 1,
'n_max_cpdf_count': 1,
'out_folder': '.',
'ti_fnam': 'ti.dat',
'simulation_grid_size': array([80, 40, 1]),
'origin': array([0., 0., 0.]),
'grid_cell_size': array([1, 1, 1]),
'mask_fnam': 'mask.dat',
'hard_data_fnam': 'hard.dat',
'shuffle_simulation_grid': 2,
'entropyfactor_simulation_grid': 4,
'shuffle_ti_grid': 1,
'hard_data_search_radius': 1,
'soft_data_categories': array([0, 1]),
'soft_data_fnam': 'soft.dat',
'n_threads': 1,
'debug_level': -1,
'n_cond': 36,
'n_cond_soft': 0,
'n_max_ite': 1000000,
'distance_measure': 1,
'distance_min': 0,
'distance_pow': 1,
'colocate_dimension': 0,
'max_search_radius': 10000000,
'max_search_radius_soft': 10000000}

All these parameters can be set when the object is initialized. A common approach to initialized the mpslib object is to initialize it using a specific choice a simulation algorithm, simulation grid size, number of realizations, and number of conditional points.
This can be done using e.g.

O = mps.mpslib(method='mps_snesim_tree',
 simulation_grid_size(80,80,1),
 n_cond = 49
 n_real = 1)

To run the MPSlib algorithms using a single thread use:

O.run()

To run the MPSlib algorithms using a multiple threads use:

O.run_parallel()

mps.eas: reading and writing EAS formatted files

mps.eas contains several functions for reading and writing EAS formatted data.

Read EAS point set

To read a point data set, use

import mpslib as mps
EAS = mps.eas.read('data.dat')

EAS['D'] contains the data values [ndata X ncolumns] as a 2D numpy array.
EAS['header'] contains the header for each columns as list of strings
EAS['title'] contains the title [string] for the eas file.

Write EAS point set

To write a matrix as an EAS formatted point set

import mpslib as mps
mps.eas.write(D, filename='eas.dat', title='eas title', header=[]):

D must be a 2D numpy array.
filename is the EAS file name.
Optionally header [list of strings] and title [string] can be set.

Read EAS volume set

An EAS volume data set, is a special version of the EAS file format that allow describing a 1D-3D volume.
The first line (the title) must contain the dimensions of the data in the eas file formatted as e.g.

100 210 13

to describe a matrix of size nx=100, ny=210, and nz=13.
It is read as for the points data set

import mpslib as mps
EAS = mps.eas.read('ti.dat')

EAS['Dmat'] contains a 3D numpy array of shape (100,210,13)

Write EAS volume set

A 3D numpy array can be written as an EAS volume set using

import mpslib as mps
import numpy as no
D = np.zeros((20,10,30))
mps.eas.write_mat(D,filename='D,dat')

mps.trainingimages: Easy access to training images.

mps.traningimages contain easy access to a large number of training images.
To see a list of the available training images call

In [40]: mps.trainingimages.ti_list()
Available training images:
checkerboard - 2D checkerboard
checkerboard2 - 2D checkerboard - alternative
strebelle - 2D discrete channels from Strebelle
lines - 2D discrete lines
stones - 2D continious stones
bangladesh - 2D discrete Bangladesh
maze - 2D discrete maze
rot90 - 3D rotation 90
rot20 - 3D rotation 20
horizons - 3D continious horizons
fluvsim - 3D discrete fluvsim

To load and plot the widely used training image from Strebelle, simply call it using e.g.

import mpslib as mps
ti, ti_filename = mps.trainingimages.strebelle()
mps.plot.plot_3d(ti)

To load and plot a checkerboard training image, use e.g

import mpslib as mps
ti, ti_filename = mps.trainingimages.checkerboard()
mps.plot.plot_3d(ti)

To load and plot the 3D fluvsim training image, use e.g

import mpslib as mps
ti, ti_filename = mps.trainingimages.fluvsim()
mps.plot.plot_3d(ti)

mps.plot: Plotting utilities

‘’mps.plot’’ contains a number of functions for plotting mpslib data and realizations in 2D (using matplotlib [https://matplotlib.org/]) and 3D (using pyvista [https://pyvista.org/]).

plot_reals_3d()

To plot several realizations using pyvista from a mpslib object, use

import mpslib as mps
O = mps.mpslib(n_real=4)
O.run
O.plot.plot_reals_3d(O)

To plot a 3D numpy array using pyvista use

import mpslib as mps
ti, ti_filename = mps.trainingimages.checkerboard()
mps.plot.plot_3d(ti)

To slice the 3D grid use

import mpslib as mps
ti, ti_filename = mps.trainingimages.checkerboard()
mps.plot.plot_3d(ti, slice=1)

To plot only vaĺues in a specific range, e.g. -.5 to 0.5, use

import mpslib as mps
ti, ti_filename = mps.trainingimages.checkerboard()
mps.plot.plot_3d(ti, threshold = (-0.5, 0.5))

Pyhthon Notebook examples

Perhaps the easiest to get starting using MPSlib is by running and adjusting a number of jupyter notebooks.

	MPSlib: Getting started with MPSlib/scikit-mps in Python
	Setup MPSLib

	Choose training image

	Run MPSlib

	Plot some realizations using matplotlib

	MPSlib: hard and soft data in MPSlib
	Define hard data

	Define soft/uncertain data

	Preferential path

	Hard data

	Soft/uncertain data

	MPSlib: Using masks

	MPSlib: Training images in scikit-mps
	List the available training images

	Plot training images

	Coarsen a 2D training to a 3D

	MPSlib: estimation
	Estimation

	Simulation

	MPSlib: computation of entropy and self-information
	Setup MPSLib

	Plot entropy

	Entropy as a function of number of conditional data

	MPSlib: variable template size in mps_snesim_tree and mps_snesim_list

	GENESIM with distance weighing

	Example: Mapping buried valleys in Kasted, Denmark
	Get the training image and conditional data

	Plot the training image and the conditional data

	MPSlib in Kasted
	Setup and run MPSlib

	Conditional simulation - hard data

	Conditional simulation - soft data

	Conditional simulation - Setup MPSlib to use both conditional hard well data, aoft conditional data related to ELEVATION and RESISTIVITY

	Conditional estimation

MPSlib: Getting started with MPSlib/scikit-mps in Python

This a small example getting started with MPSlib through an iPython notebook

[1]:

import numpy as np
import matplotlib.pyplot as plt
import mpslib as mps

Setup MPSLib

First one need to initialize an instance of the mpslib object.

[2]:

Initialize MPSlib using default algortihm, and seetings
O = mps.mpslib();

Initialize MPSlib using the mps_snesim_tree algorthm, and a simulation grid of size [80,70,1]
O = mps.mpslib(method='mps_snesim_tree', simulation_grid_size=[80,70,1])

specific parameters can be parsed directly when calling mps.mpslib (as abobve), or set by updating the O and O.par structure as
#O.parameter_filename = 'mps_snesim.txt'
O.par['debug_level']=-1
O.par['n_cond']=25
O.par['n_real']=16
O.par['n_threads']=5
O.par['do_entropy']=1
O.par['simulation_grid_size']=np.array([80,50,1])

Using mps_genesim installed in /mnt/f/PROGRAMMING/mpslib/scikit-mps/mpslib/bin (scikit-mps in /mnt/f/PROGRAMMING/mpslib/scikit-mps/mpslib/mpslib.py)
Using mps_snesim_tree installed in /mnt/f/PROGRAMMING/mpslib/scikit-mps/mpslib/bin (scikit-mps in /mnt/f/PROGRAMMING/mpslib/scikit-mps/mpslib/mpslib.py)

[3]:

All adjustable parameters for the specifric chosen MPSlib algorithm are
O.par

[3]:

{'n_real': 16,
 'rseed': 1,
 'n_max_cpdf_count': 1,
 'out_folder': '.',
 'ti_fnam': 'ti.dat',
 'simulation_grid_size': array([80, 50, 1]),
 'origin': array([0., 0., 0.]),
 'grid_cell_size': array([1, 1, 1]),
 'mask_fnam': 'mask.dat',
 'hard_data_fnam': 'hard.dat',
 'shuffle_simulation_grid': 2,
 'entropyfactor_simulation_grid': 4,
 'shuffle_ti_grid': 1,
 'hard_data_search_radius': 1,
 'soft_data_categories': array([0, 1]),
 'soft_data_fnam': 'soft.dat',
 'n_threads': 5,
 'debug_level': -1,
 'do_estimation': 0,
 'do_entropy': 1,
 'template_size': array([8, 7, 1]),
 'n_multiple_grids': 3,
 'n_min_node_count': 0,
 'n_cond': 25}

Choose training image

[4]:

TI, TI_filename = mps.trainingimages.strebelle(di=2, coarse3d=1)
#TI, TI_filename = mps.trainingimages.rot90()
O.par['ti_fnam']=TI_filename
plt.imshow(TI[:,:,0].T)

Beginning download of https://github.com/GAIA-UNIL/trainingimages/raw/master/MPS_book_data/Part2/ti_strebelle.sgems to ti_strebelle.dat

[4]:

<matplotlib.image.AxesImage at 0x7f8ce3029bb0>

[image: ../_images/Notebooks_ex01_mpslib_getting_started_6_2.png]

Run MPSlib

The chosen MPSlib algorithm is run using a single thread by executing

O.run()

and using multiple threads by executing

O.run_parallel()

[5]:

#O.run()
O.run_parallel()

parallel: Using 4 of max 10 threads

[5]:

[<mpslib.mpslib.mpslib at 0x7f8ce0c1aeb0>,
 <mpslib.mpslib.mpslib at 0x7f8ce319f580>,
 <mpslib.mpslib.mpslib at 0x7f8ce0c1ae80>,
 <mpslib.mpslib.mpslib at 0x7f8ce319f6a0>]

Plot some realizations using matplotlib

[6]:

O.plot_reals()

[image: ../_images/Notebooks_ex01_mpslib_getting_started_10_0.png]

[]:

MPSlib: hard and soft data in MPSlib

MPSlib can account for hard and soft data (both colocated and no-colocated). Detail about the use of the preferential path and co- and non-co-located soft data can be found in

Hansen, Thomas Mejer, Klaus Mosegaard, and Knud Skou Cordua. “Multiple point statistical simulation using uncertain (soft) conditional data.” Computers & geosciences 114 (2018): 1-10 [https://doi.org/10.1016/j.cageo.2018.01.017]

mps_snesim_tree and mps_snesim_list can account for both colocated soft data only.

mps_genesimcan account for both colocated and non-colocated soft data.

Define hard data

Hard data (model parameyers with no uncertainty) are given by the ‘’’d_hard’’’ variable, with X, Y, Z, and VALUE for each conditonal data. 3 conditional hard data can be given by

O.d_hard = np.array([[ix1, iy1, iz1, val1],
 [ix2, iy2, iz2, val2],
 [ix3, iy3, iz3, val3]])

Define soft/uncertain data

Soft data (model parametrs wth no uncertainty) are given by the ‘’’d_soft variable, with X, Y, Z, for the position, and a probability of each possible outcome. When considering a training with two categories [0,1], then with P(m=0)=0.2, at position [5,3,2] can be set as

O.d_soft = np.array([[5, 3, 2, 0.2 0.8]])

If a training image has 3 categories and P(m=0)=0.2, and P(m=1)=0.3, then

O.d_soft = np.array([[5, 3, 2, 0.2, 0.4, 0.5]])

Preferential path

MPSlib makes use of a preferential simulation path, such that model parameters with more informed conditional information (i.e. wigh lower entropy) prior to less nodes with less informed conditonal information. Especially when using spare soft data, the use of a preferential path should be preferred

O.par['shuffle_simulation_grid']=0 # Unilateral path
O.par['shuffle_simulation_grid']=1 # Random path
O.par['shuffle_simulation_grid']=2 # Preferential path

co-located soft data

By default only co-located soft data are considered during simulation, as given by

O.par['n_cond_soft']=1 # only 1 soft data is used
O.par['max_search_radius_soft'] = 0 # only co-located soft data us used
O.par['shuffle_simulation_grid']= 2 # Preferential path

Whenever using only co-locate soft data is is adviced to use the preferential path

non-co-located soft data.

Even when using the preferential path, model parameters with informed conditional indformation, close to the point being simulated, will not be taken into account. This means in practice that not all information in soft conditional data is used. As an alternative ‘mps_genesim’ can handle non-colocated soft data, by using a rejection sample to accept a proposed match m* from scannining the TI, with a probability proprtional to the product of the condtional information evalauted in m*.

This means that one can account for, in principle, any number of soft data, as one can account for any number of hard data. In practice, it becomes computationally har to account for many soft data. To set the number of soft data used for conditining to 3, on can use

O.par['n_cond_soft']=3
O.par['max_search_radius_soft'] = 10000000 # only co-located soft data us used
O.par['shuffle_simulation_grid']=2 # Preferential path

When using multiple (or all) conditional soft data, then use of the preferential path may not lead to more informed realizations than using a random path, but simulation mey be sginificantly faster using the preferential path as model parameters with soft data will be simulated first, and the subsequenty simulation will be conditional to only hard data, and hence computationally more efficient. Therefore it is advised to use a preferential path always.

[1]:

import mpslib as mps
import numpy as np
import matplotlib.pyplot as plt

[2]:

#O=mps.mpslib(method='mps_snesim_tree', parameter_filename='mps_snesim.txt')
O=mps.mpslib(method='mps_genesim', parameter_filename='mps_genesim.txt')

TI1, TI_filename1 = mps.trainingimages.strebelle(3, coarse3d=1)
O.par['soft_data_categories']=np.array([0,1])
O.ti=TI1

Using mps_genesim installed in /mnt/space/space_au11687/PROGRAMMING/mpslib (scikit-mps in /mnt/space/space_au11687/PROGRAMMING/mpslib/scikit-mps/mpslib/mpslib.py)

[3]:

O.par['rseed']=1
O.par['n_multiple_grids']=0;
O.par['n_cond']=16
O.par['n_cond_soft']=1
O.par['n_real']=500
O.par['debug_level']=-1
O.par['simulation_grid_size'][0]=18
O.par['simulation_grid_size'][1]=13
O.par['simulation_grid_size'][2]=1
O.par['hard_data_fnam']='hard.dat'
O.par['soft_data_fnam']='soft.dat'
O.delete_local_files()

O.par['n_max_cpdf_count']=100

Hard data

[4]:

Set hard data
d_hard = np.array([[15, 4, 0, 1],
 [15, 5, 0, 1]])
Optionally use hard data
O.d_hard = d_hard

Soft/uncertain data

[5]:

Set soft data
d_soft = np.array([[2, 2, 0, 0.7, 0.3],
 [5, 5, 0, 0.001, 0.999],
 [10, 8, 0, 0.999, 0.001]])

O.d_soft = d_soft

Example 1: co-locational soft data only

In this example only one soft data is used, and only if it located a the same location as being simulated in the sequential simulation method.

[6]:

Only co-locational
O.par['n_cond_soft']=1
O.par['max_search_radius_soft'] = 0

gtxt=['unilateral','random','preferential']
shuffle_simulation_grid_arr = [0,1,2]
fig = plt.figure(figsize=(15, 8))
for i in range(len(shuffle_simulation_grid_arr)):
 # Set preferential path
 O.par['shuffle_simulation_grid']=shuffle_simulation_grid_arr[i]

 O.delete_local_files()
 O.run_parallel()
 m_mean, m_std, m_mode=O.etype()

 plt.subplot(2,3,i+1)
 plt.imshow(m_mean.T, zorder=-1, vmin=0, vmax=1, cmap='hot')
 plt.colorbar(fraction=0.046, pad=0.04)
 plt.title('%s path' % gtxt[i])
 plt.subplot(2,3,3+i+1)
 plt.imshow(m_std.T, zorder=-1, vmin=0, vmax=0.4, cmap='gray')
 plt.title('std')
 plt.colorbar(fraction=0.046, pad=0.04)

parallel: Using 25 of max 26 threads
parallel: Using 25 of max 26 threads
parallel: Using 25 of max 26 threads

[image: ../_images/Notebooks_ex_mpslib_hard_and_soft_9_1.png]

Example 2: One non-co-locational soft data

In this example still only one soft data is used, however, it can be located at any location in tyhe simulation grid.

[7]:

Only 1 co-locational
O.par['n_cond_soft']=1
O.par['max_search_radius_soft'] = 1000000

shuffle_simulation_grid_arr = [0,1,2]
fig = plt.figure(figsize=(15, 8))
for i in range(len(shuffle_simulation_grid_arr)):
 # Set preferential path
 O.par['shuffle_simulation_grid']=shuffle_simulation_grid_arr[i]

 O.delete_local_files()
 O.run_parallel()
 m_mean, m_std, m_mode=O.etype()

 plt.subplot(2,3,i+1)
 plt.imshow(m_mean.T, zorder=-1, vmin=0, vmax=1, cmap='hot')
 plt.colorbar(fraction=0.046, pad=0.04)
 plt.title('%s path' % gtxt[i])
 plt.subplot(2,3,3+i+1)
 plt.imshow(m_std.T, zorder=-1, vmin=0, vmax=0.4, cmap='gray')
 plt.title('std')
 plt.colorbar(fraction=0.046, pad=0.04)

parallel: Using 25 of max 26 threads
parallel: Using 25 of max 26 threads
parallel: Using 25 of max 26 threads

[image: ../_images/Notebooks_ex_mpslib_hard_and_soft_11_1.png]

Example 3: 3 (all) non-co-locational soft data

[8]:

Three co-locational
O.par['n_cond_soft']=3
O.par['max_search_radius_soft'] = 1000000

shuffle_simulation_grid_arr = [0,1,2]
fig = plt.figure(figsize=(15, 8))
for i in range(len(shuffle_simulation_grid_arr)):
 # Set preferential path
 O.par['shuffle_simulation_grid']=shuffle_simulation_grid_arr[i]

 O.delete_local_files()
 O.run_parallel()
 m_mean, m_std, m_mode=O.etype()

 plt.subplot(2,3,i+1)
 plt.imshow(m_mean.T, zorder=-1, vmin=0, vmax=1, cmap='hot')
 plt.colorbar(fraction=0.046, pad=0.04)
 plt.title('%s path' % gtxt[i])
 plt.subplot(2,3,3+i+1)
 plt.imshow(m_std.T, zorder=-1, vmin=0, vmax=0.4, cmap='gray')
 plt.title('std')
 plt.colorbar(fraction=0.046, pad=0.04)

parallel: Using 25 of max 26 threads
parallel: Using 25 of max 26 threads
parallel: Using 25 of max 26 threads

[image: ../_images/Notebooks_ex_mpslib_hard_and_soft_13_1.png]

[]:

MPSlib: Using masks

[1]:

import mpslib as mps
import matplotlib.pyplot as plt
import numpy as np
import copy
from numpy import squeeze

[2]:

TI1: Strebelle
TI1, TI_filename1 = mps.trainingimages.strebelle(di=1)
TI1=np.swapaxes(TI1,0,1)
TI1: Strebelle, rotated and coarsened
TI2, TI_filename2 = mps.trainingimages.strebelle(di=2)
plt.figure(1)
plt.subplot(1,2,1)
plt.imshow(np.transpose(TI1[:,:,0]))
plt.subplot(1,2,2)
plt.im